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Data traffic trends in cellular networks

Mobile data traffic increased by 63% in 2016 to 7 hexabytes/month
Mobile data traffic *18 over the past 5 years

Driven by smartphones and tablets and huge growth expected in M2M/loT
47% Compound Annual Growth Rate (CAGR) expected up to 2021

Mobile video traffic accounted for 60 % of total mobile data traffic in 2016
Wi-Fi access points and femtocells offload a great part (63%) of the mobile data

traffic

However this traffic offload mostly profits indoor = outdoor small cells needed

60

50

Exabytes 40
per Month 3,

20

1

o

0

47% CAGR

49 EB

35 EB
24 EB
17 EB
11 EB
m

2016 2017 2018 2019 2020 2021

Source: Cisco VNI Mobile, 2017

Billions of
Devices

=N
o N

O N b O ©®

® Smartphones (38%,43%)

® Other Portable Devices (0.1%,0.1%)

Phablets (7%,10%)
¥ Nonsmartphones (41%,13%)
HPCs (2%,2%)  e—

M2M (10%,29%)
Tablets (2%,3%)

2016 2017 2018 2019 2020 2021



5G market opportunities

Scalable across an extreme variation of requirements

 Unclear vision on 5G

To reach challenging locations
N energy ? Strong security

— Profits decrease from 3G to 4G R B o
— 5G profitability not clear e e o
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Proposition of Heterogeneous Network at H2020
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Proposition of Heterogeneous Network at H2020

* Mmw access point and backhauling rationale

— Huge available bandwidth

— High frequency reuse

— Natural immunity to interference
— Low EMF (<1ImW/cm?)
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* Coexistence of 3 layers of wireless network coverage:
— 3G/4G network: signaling, voice and high priority data at long range

small cells up to the core network

mmw small cells: short range directive high data rate access point
60GHz/E-band backhauling: aggregation and routing of data between
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Mmw Small Cell challenges

e Access Point

— Provide Gbps experience and new services to
multiple users in the cell

— Local/Global radio resource management
— Mobility and small cell handover

— Electromagnetic field (EMF) exposure

— Cost of dense small cell network

« Wireless backhauling
— Aggregation and routing (latency)
— Low cost and versatile

* Reduction of Total Cost of Ownership (TCO)
— Capex:

Low cost CMOS technology, 3D package integration,
reconfigurable planar antenna array

— Opex:

Low cost site rental, license-light/free bands,
low power consumption, remote maintenance
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Long range vs small cell backhaul

E-band Long Range specifications (SoA)
250MHz channels, up to 2GHz BW
Adaptive modulation up to 256QAM
1.2Gbps per channel, 10Gbps aggregated
Power consumption >50W

Volume >4l + antenna

Range up to few km

[1I-V PA, Psat >25dBm

~50dBi 2 feet parabolic antenna
<-110dBc/Hz@1MHz phase noise
MMIC integration

V-band small cell specifications
1.76GHz channels
Adaptive modulation up to 16QAM
4Gbps per channel, 16Gbps aggregated
Power consumption <0.5W
Volume <1l with antenna
Range 50-200m

Integrated CMOS PA 10dBm Psat
~32dBi planar antenna array
-90dBc/Hz@1MHz phase noise
Monolithic CMOS RFIC



Backhaul technology trends: RF front-end

Over time
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Backhaul technology trends

Planar discrete lens (transmit array)
Cost, complexity and power consumption effective solutions

Use of planar technologies for potential full integration

Directive beam
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Backhaul technology trends: SiP module

10*10mm? System In Package module with mmw transceiver and antennas
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4 channels 60GHz transceiver

Liquid Crystal Polymer interposer

3-metal layer back-end: antennas, interconnects

TSV for shielding and vertical interconnects

transceiver RFIC flip-chipped on the bottom side of the interposer
through polymer vias

BGA connection of the interposer on the PCB
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Backhaul technology trends: transmit array antenna

3bit Phase shifting matrix Realization on low cost PCB
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Small cell backhaul proof of concept

* 60GHz transceiver on organic interposer module
 Module on BGA card with power supply, Xtal
* Transmit array on front

* |ndoor/outdoor measurement:
= 3Gbps (QPSK) at 100m range
=  7Gbps (16QAM) at 30m range

* Manual antenna alignment




Small cell backhaul proof of concept

Beam-switching steerable transmit array antenna
Principle
= Selection of antenna source (antenna array)

for beam switch over +/-10-20° (electronic beam alignment)
= 20-35dBi gain function of lens area

= Proof of concept: 5 beam switched antenna array | - : - ;
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Small cell backhaul perspective

Beam-switching steerable transmit array antenna

Active feeding switch IC

Bidirectional active feeding network for beam switching
Compensation of the feeding network losses thanks to PA/LNA
Possible integration of phase shifters for fine beam alignment

o ||| G —

Beam switching IC Lens



MmW Multi User Access Point

Proposed architecture

» Sectorization of the azimuthal plan

* 50m-200m range

* 0.3to 7Gbps DL per user

 Multiple array modules per sector

* Multi-user access (Time/Frequency/Space)

Elevation

Azimuth

*E

1o Nl

om im

Milgaes



MmW Access Point: beamforming architectures

Beamforming approaches
— Beam switching
— RF beamforming: single IC with integrated phase shifters
— RF beamforming: satellite phase shifters (active antenna array)
— Massive MIMO (digital beamforming) = hybrid beamforming
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MmW Access Point: beamforming architectures

RF Beamforming approaches

Fixed beam antenna array

Compact monochip

Satellite phase shifters
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MmW Access Point: satellite active phase shifter

Satellite phase shifter architecture

— BICMOS 55nm active antenna array module

— {PA, LNA, phase shifter} circuit flip-chipped at antenna back with transceiver IC
— Compensation of the power splitter and phase shifter losses

— Vector modulator phase shifter
— 3D multi-layer organic module (LCP)
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MmW Access Point: satellite active phase shifter

Key Enabling Technology: Vector modulator phase shifter

» Bidirectional phase shifter (small area: 400*700um?)

* Quadrature generation and passive vector modulator
0.5dB amplitude and 2.5° phase precision with 6bits DAC

* Tx/Rx driver to compensate for losses (~4dB)

Operations of vector generation
and amplification are split

T
Passive vector modulator

I@‘\I

IMS’ 2017




MmW Access Point: satellite phase shifter _

KET: Tx/Rx switch

Tx/Rx Balun and matching network
Extinction of Vbias/Vctrl to switch between Tx/Rx
<2dB loss; BW >12GHz; >15dBm ICP1dB

KET: Efficient Power Amplifier

2 stages
Bipolar transistors in deep class AB
>30 dB gain, 15dBm OCP1dB

125mW Pdc | |:|

3I—II—I )] @

3 stages Low Noise Amplifier

1st stage CMOS Common Source
2" and 3rd stage Bipolar Common Emitter

BW 15GHz; Gain 23 dB; NF 5.4dB

Switch off .

MOS stage E-“mm Blpstages

A/4T_Line
Wrigemza




MmW Access Point: satellite phase shifter

Beamforming with satellite phase shifter
— 2*4 antenna array, 17dBi gain, 36dBm EIRP

— {PA, LNA, phase shifter} circuit in BICMOS55nm — — , —

* Compensation of the power splitter and phase shifter losses
* Vector modulator phase shifter

— 3D multi-layer organic module (LCP), 20*20mm?

LCP interposer module layout

60GHz transceiver
4 channels 57-66GHz
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MmW Access Point: RF beam switching

Reconfigurable transmit array lens in Ka-band

— 1-bit electronically reconfigurable transmit array with 400 antenna elements
— 3-dB bandwidth: 15%; 3-dB Axial Ratio bandwidth: 18%
— Efficiency: 58%

— Beamsteering: £60° in every azimuth plane (5-dB scan loss at 60°)
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Integration of mmw RFIC in mobile

Rx/UE side
Subarray 2

Challenges
— High performance low cost CMOS

Subarray 3

Distinct
clusters/paths

— Low power analog/digital ICs

— Low cost small form factor packaging with: Subarray 4

.. . Subarray 1
e Minimum routing length Multiple antenna

subarray units at UE

e High radiation performance
e Good thermal dissipation

HTCC Si LCP 10*10mm?
13.5*8.5mm? 6.5%6.5mm?

Interposer (top)

Interposer (bottos




© ZigbeeT

© Bluetooth LE

Is mmW low power ?
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MmW Contactless connector

e Coherent architecture

DAC ADC
Data Digital Base Digital Base Received data
Band Band
DAC ] . ADC
0 » Up to 4 bit/Hz
>100pJ/bit
PLL PLL
* Non coherent architecture (On/Off keying)
Data
- < i
Digital interface i <18::t){]|;|§lt
""""""ﬁ|||I|l|.'||"""""'j|f|l|wl|f|l|“|' [T :
Oscillator i I ] s
Received data
Amplifier Low Noise

Envelop Comparator and

Amplifi
mplifier detector  digital interface



Contactless connector

[77 | | in

— 1,9mmx 3, 1mm
EEéRBSPéRRE
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60GHz contactless connector (2016)

TeChnOIOEV: i .coonndlna
- 60GHz OOK transceiver in CMOS SOl 65nm __A84béoodnnini
- Integrated antennas

Demonstrated performances:

- HD Video streaming

- Data rate: up to 2.5Gbps

- Range: 10cm

- Power consumption: 50mW

Inductive Charging Docking
Station & data transfer



Conclusions

* Not aclear 5G roadmap yet
* Mmw frequencies should take an important role by H2020

* Device-to-device short range communication to pave the way for mass-
market

* Small cell backhauling race has already started
e MmW outdoor access point is the next hot topic

* New progress in SOI/CMOS/BICMOS technologies, antennas and
packaging would reduce the cost of mmW

* |Innovative approaches still needed to solve the major technical challenges

10000 x more traffic

10-100 x more devices

Capacity 11 gtitisscond Performance
Y requirements

Latency
< years M2M
Energy %/,& 10 battery life 2 020+
i
e M2M ultra low cost

Gast Flat energy

User Gbit/s
data rates I1 peak data rates

10 Mbit/s
wherever needed Ultra
reliability

Coverage




3GPP Roadmap

5G RAT feat'ures:phased
from Rel-15 for early
deployments
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